An Anomalous Reaction of Dimethyloxosulfonium Methylide

Alexander G. Yurchenko* and Natalie N. Melnik Department of Chemical Engineering, Kiev Polytechnic Institute, 252056, Kiev, USSR Igor R. Likhotvorik* Department of Chemistry, Princeton University, Princeton, New Jersey 08544-1009

Abstract: On treatment with dimethyloxosulfonium methylide in the presence of sodium methylsulfinylmethide, 3-methylenebicyclo[3.3.1]nonane-7-one oxide undergoes an unusual transformation to 4,5-dimethylenetricyclo[$4.3.1.0^{3,8}$]decane-1-ol.

Dimethyloxosulfonium methylide is an extremely important reagent for preparing oxiranes¹ or cyclopropanes.² However, our attempt to obtain diepoxide 2 from 3-methylenebicyclo[3.3.1]nonane-7-one oxide 1 was unsuccessful. Instead of the desired product, an unsaturated alcohol was formed^{3a} to which the structure 4,5-dimethylenetricyclo[4.3.1.0^{3,8}]decane-1-ol **3** was assigned by analysis of spectroscopic data.

A molecular weight of 176 was indicated from mass spectrometry, (m/Z 176, electron impact at 70 eV). The ¹³C NMR spectrum showed the presence of 12 carbons (3 quarternary, 3 tertiary and 6 secondary) and suggested that the molecule had two carbon-carbon C = CH₂ double bonds (δ 32.83, 35.58, 38.25, 41.40, 45.32, 47.05, 47.42, 77.08, 106.39, 108.29, 149.93, 152.37). Sixteen protons were accounted for from the ¹H NMR data: four olefinic protons (δ 4.50, 1H, d, J = 2 Hz; 4.65, 1H, s; 4.85, 1H, d, J = 2 Hz; 5.07, 1H, s), a hydroxy proton (δ 3.57) and 11 protons of the protoadamantane nucleus. The ¹H NMR spectra in the presence of Eu(fod)₃ indicated that the olefinic protons were quite distant from the hydroxy group. IR spectra showed the absorption of a hydroxy group (3610 cm⁻¹) and C-C double bonds ($v_{C=C}$, 1638 and 1341 cm⁻¹, v_{C-H} , 3085 cm⁻¹). The UV spectrum showed a band for the absorption of conjugated double bonds (λ_{max} 237.6 nm, log ϵ 4.06, dioxane).

The first stage of the processes was proved to be a cyclization reaction. The anion, generated from oxide 1 by a strong base, yielded tricyclo[$4.3.1.0^{3,8}$]decane-1-ol-4-one^{3b} 4, which was converted to the same diene 3 as was formed from oxide 1 under dimethyloxosulfonium methylide treatment, but in much lower yield.^{3c} The next

stages may include dehydration, sigmatropic rearrangement and abstraction of methylsulfenic acid⁴ to give 4,5-dimethylenetricyclo[$4.3.1.0^{3,8}$]decane-1-ol 3.

Although some unusual rearrangements of sulfur ylides are known,⁵ the above-mentioned transformation represents a reaction of a novel type.

Acknowledgments. We warmly thank Professor Maitland Jones, Jr. and his group for creative discussion and IREX exchange program for sponsoring Igor R. Likhotvorik's visit to Princeton University.

References and Notes

1. E. J. Corey and M. Chaykovsky, J. Am. Chem. Soc., 84, 867 (1962).

2. B. Loev, M. F. Kormendy and K. M. Snader, Chem. Ind., 1710 (1964).

3. (a) Typical procedure: Trimethyloxosulfonium iodide (0.863 g, 3.9 mmol) was added under argon to a stirred dispersion of NaH (0.80 g, 33.3 mmol) in 70 ml DMSO. After the addition was complete (5 - 10 min.) the mixture was stirred for 0.5 hr at 25° C, then solution of 1 (0.50 g, 3 mmol) in dry DMSO (20 ml) was added and the mixture was stirred for 20 min at 115 - 120° C. The reaction mixture was poured on to ice and extracted with chloroform. Usual work-up led to a crude product which was purified by chromatography on aluminium oxide (elution with diethyl ether - methanol, 19 : 1) to give 0.129 g (0.78 mmol, 26%) pure 3.

(b) 1-Hydroxyprotoadamantane-4-one 4 was obtained by treatment of 1 (0.5 g, 3 mmol) with sodium or potassium methylsulfinylmethide in DMSO (0.8 g, 33.3 mmol NaH - 20 ml DMSO or 1.0 g, 8.9 mmol t-BuOK - 20 ml DMSO) at 115 - 120° C. Yield 29 - 47.6%.

(c) When 4 had been used as a starting compound, diene 3 was isolated in 3 -5% yield.

4. C. A. Kingsbury and D. J. Cram, J. Am. Chem. Soc., 82, 1810 (1960).

5. For reviews see: S. Braverman in "The chemistry of sulfones and sulfoxides". S. Patai, Z. Rappoport, Eds.; Wiley, New York, 1988; chapter 14. E. Block. Reactions of organosulfur compounds; Academic Press, New York, 1978. B. M. Trost, L. S. Mevin, Jr. Sulfur ylides; Academic Press, New York, 1975.

(Received in USA 17 February 1989)